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Creasing in thin shells admits large deformation by concentrating
curvatures while relieving stretching strains over the bulk of the
shell: after unloading, the creases remain as narrow ridges and
the rest of the shell is flat or simply curved. We present a helically
creased unloaded shell that is doubly curved everywhere, which is
formed by cylindrically wrapping a flat sheet with embedded fold-
lines not axially aligned. The finished shell is in a state of uniform
self-stress and this is responsible for maintaining the Gaussian
curvature outside of the creases in a controllable and persistent
manner. We describe the overall shape of the shell using the famil-
iar geometrical concept of a Mohr’s circle applied to each of its
constituent features—the creases, the regions between the creases,
and the overall cylindrical form. These Mohr’s circles can be com-
bined in view of geometrical compatibility, which enables the
observed shape to be accurately and completely described in terms
of the helical pitch angle alone. [DOI: 10.1115/1.4023624]
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1 Introduction

Very thin plates or shells can become creased during excessive
out-of-plane deformation. Crumpling a sheet of paper by hand
into a ball is a powerful yet simple demonstration: a few creases
initially form along lines between sharp points underneath the fin-
gertips so that overall sheet-folding can proceed; this, in turn,
allows more of the paper to be manually compressed, thereby
forming more, often intersecting, creased lines. Kinematically,
creases admit large deformations for a relatively small energy
penalty; in particular, they focus, or concentrate, the stretching
energy component, which is disproportionately higher than for
bending in very thin shells. Correspondingly, the rest of the sheet
deforms in bending only so that the creases divide regions that are
developable—either singly curved or flat facets [1]. The original
complexity of the overall shape can now be rendered through sim-
pler constituent features and these are evinced more clearly when
the loading and boundary conditions are simple and carefully con-
trolled. For example, when a sheet is placed on a circular rim and
loaded centrally by a downwards point-force, it forms a unique
doubly-conical shape everywhere—a “d-cone”—while a single
crease grows underneath the loading point and between each coni-
cal region [2].

Understanding the characteristics of creased shells over a range
of geometrical scales is an active research field in several disci-
plines. In the physical world, it informs upon many natural proc-
esses, including the confined deformation of thin material layers
such as films on compliant substrates [3], the draping of thin
sheets [4], and the folding/deployment of leaves, insect wings,
etc. [5]. Packaging engineers have been folding and shaping flat

cardboard sheets into container boxes and sheet metal workers are
beginning to pay attention because of the potential reduction in
the manufacturing “carbon footprint”, compared to traditional
methods of rolling and pressing metallic panels.

In this study, we are concerned with the shape of a closed shell
that has been “precreased” by folding a flat sheet along straight
lines so that it can be wrapped into a cylindrical form. The fold-
lines are kinematically identical to creases in that they concentrate
the curvature across them; however, because of the way in which
the opposing edges of an initially flat sheet are connected, the
“interlineal” regions between creases are not developable, as
might be expected, but instead are doubly curved. Such folding
and wrapping produces a distinctive surface texture and the result-
ing cylinder is stiffer, both axially and radially, compared to a
smooth cylinder under loads applied simply by hand: these stiff-
nesses are not formally quantified here but we surmise they are
similar to the structural benefits eschewed in an earlier study
about forming a cube by folding up a flat sheet [6] and may pro-
vide another way of improving the performance of practical shells
without adding material volume. Instead, we focus on describing
the evolution of the final shape of the shell in terms of the interac-
tion between the overall cylindrical shape, the local curvature
afforded by the creases, and the influence of the helical pitch; in
particular, we assert and confirm that the doubly-curved shape of
the interlineal regions, which resemble “strips,” is found by sub-
tracting the surface effect of creases from a smooth cylinder; this
latter point is a novel aim of study. First, we describe their manu-
facture from everyday card and how to simplify the assessment of
all elements of shape, which then feeds into Sec. 3, where a kine-
matical analysis is carried out using the familiar concept of a
Mohr’s circle of curvatures. Section 4 concludes with a final
discussion.

2 Manufacture and Measurements

A set of parallel hinge-lines is formed by gently scoring heavy
A4 paper-card with a pointed steel scribe so that all lines are
inclined at an angle a to either short edge of the sheet. The dis-
tance between the lines is fixed at 15 mm but it can be varied
around this value by a few millimeters, provided that the spacing
is not too wide so that local buckling occurs, leading to nonuni-
form distortions, or not too narrow so that making accurate meas-
urements becomes difficult. Bending the sheet about the axis of
each line requires no effort as the hinge-lines are virtually friction-
less, and this forms a freely-wrapped helical shape of intercon-
nected flat facets; see Fig. 1(a). The short edges are then
connected together as if forming a right-circular cylinder from a
smooth sheet, but the sheet has to be gently coerced against the
free helical form in a shearing fashion so that the top and bottom
edges now lie in a plane and any overlapping hinge-lines are
made to coincide for circumferential uniformity. Because of the
forcing, the hinge-lines are no longer straight or parallel, but fol-
low identical helical paths now inclined at an angle of pitch a to
the new axis of the cylinder. As shown in Fig. 1(b), the helices are
left-handed when a rotates in the anticlockwise direction and vice
versa. The surface of the cylinder is smooth between the hinge-
lines however, a sharp rotation across them remains, which pro-
duces a creased cylinder overall: henceforth, we designate the
hinge-lines in this form as creases. The intrinsic coordinates along
and normal to each crease are x and y, respectively, and a second
angle, b in Fig. 1(b), is defined momentarily. A typical con-
structed cylinder is shown in Fig. 1(c).

The detailed shape of the strips between the creases is captured
in Fig. 2 in three close-up views. First, Fig. 2(a) shows that the
strips are not curved widthwise and lines gently drawn onto the
surface in this direction evidently remain straight. There is a sec-
ond direction within each strip along which surface lines are also
straight and this is located by carefully rotating a straight edge,
such as a ruler, placed normally to the surface until contact is
made everywhere while taking care not to indent the strip, and
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then drawing a line along this edge. One particular line is contigu-
ously created in Fig. 2(b) by drawing along the straight edge for
each strip and using the same end-points for adjacent strips: if the
cylinder were laid open into the original flat sheet, this line makes
an angle b to the y-axis, which is taken to be positive in the same
sense of a. Finally, when a surface line is drawn parallel to the
cylinder axis, it is gently curved in the radial direction; see Fig.
2(c). In this view, the center of curvature lies outside (and above)
the cylinder, in opposition to the hoopwise curvature, and this

clearly shows that the strips are doubly curved of negative Gaus-
sian curvature.

These properties are uniform in each strip, i.e., they do not
depend on the location within the strip and they are repeated in
cylinders with different pitch-angles, where the value of b is
found by the same method previously described and recorded
against a for several strips before being reported later (in Fig. 5).
Uniformity also ensures that the detailed shape can be compactly
described; for example, using a Mohr’s circle of twisting curva-
ture (or “twist”) versus curvature [7] because it expresses direc-
tional properties—where the two directions of zero surface
curvature can be usefully employed. To complement our under-
standing of the effect of creasing upon a smooth cylinder, we may
think of each crease locally absorbing surface curvature with the
overall cylindrical compatibility being upheld; in other words, the
original distributed curvature becomes concentrated in each
crease, where the closed surface is now discretely shaped. As a
corollary, we can find the detailed shape of strips by subtracting
the creasing effect, expressed as a surface property, from the orig-
inally smooth cylinder and this may be addressed by ascribing
separate Mohr’s circles for each feature. This approach is novel
since it confers surface properties upon the crease even though it
is treated as having zero width locally, but also because combin-
ing constituent Mohr’s circles is, in itself, generally not reported.
The latter turns out to be a trivial exercise, provided that the prop-
erties concerned have the same local direction, and we demon-
strate this first for the more familiar case of an element in plane
stress, where adding Mohr’s circles is tantamount to adding
forces: combining geometrical features in creased cylinders is
analogous if, conceptually, less intuitive, and this is performed
afterwards.

3 Analysis

Figure 3 revises the procedure for adding together two general
states of stress at an elemental point in a structure using Mohr’s
circles. A reference direction is first declared, which can be the
coordinate system for either state. When both states are expressed
in the same coordinate system, the corresponding stresses and the
shear stress on identical elemental faces are added together; the
figure also tracks the addition of vectors for each state, starting at
the axes origin and finishing at a pair of stress coordinates, in
order to confirm the construction of the third and final Mohr’s
circle.

Distinguishing each of the surface features of the creased cylin-
ders begins with a Mohr’s circle of twisting curvature �c versus
curvature c in Fig. 4(a) for a smooth cylinder, which we declare to
be the “global” case since it encompasses strips and creases as dis-
tinct elements. The principal values of the curvature are zero and
j, respectively, along and circumferentially around the cylinder,
whose wrapped radius is 1=j. Recall that the local direction along
the strips x is inclined at a to the axis, thus the principal diameter
is rotated by 2a in the same sense for curvature properties of this
orientation. The plotting convention is similar to the case for
plane stress, in which the end-points are taken to be the coordi-
nates ðjG

xx;�jG
xyÞ and ðjG

yy; j
G
xyÞ, where the superscript “G,”

denotes a global property. From simple trigonometry, this leads to
the following expressions

jG
xx ¼ j sin2 a; jG

yy ¼ j cos2 a; jG
xy ¼ j sin a cos a (1)

The strips are locally flat across their widths and, denoting their
properties by a superscript “S,” the surface curvature in that direc-
tion jS

yy is zero even though, globally, the cylindrical curvature is
generally not zero. In view of the original flat sheet, this absence,
or “relief,” of curving is compatible with the global cylindrical
shape only because the creases afford rotation across them; they
do not otherwise affect the global properties because they can
conform to the global shape by being helically wrapped. Thus, the
other curvatures of the strip are equal to the global cylindrical

Fig. 1 Manufacture of a creased cylinder. (a) Parallel fold-lines
are introduced first into a flat rectangular sheet at an angle, a to
one of the edges. The sheet then wraps into a helicoidal form
when simply bent about each fold-line. (b) The opposite short
edges of the sheet are connected to form a right-circular cylin-
der overall with the top and bottom edges each being planar.
The angle of pitch of the original fold-lines to the axis of cylinder
is a and the coordinates x and y denote the directions, respec-
tively along and across the interlineal region of strip between
the fold-lines, which are now designated as creases. The angle b
defines the direction of a line relative to the strip width direction
whose properties are discussed in Fig. 2(c). A practical cylinder
made of A4 paper-card with fold-lines 15 mm apart and inclined
at a 5 30�. A description of the drawn lines is also given in Fig. 2.

Fig. 2 Views relating to certain properties of the shape, which
are amplified by the drawn lines. (a) In a direction widthwise
and normal to the creased lines, the strip has no surface curva-
ture as given by the straight pencil line: this is repeated over
several strips. (b) A second direction of zero surface curvature,
defined by b in Fig. 1, is found by rotating a flat narrow edge on
the surface of each strip region until the edge makes contact
everywhere on the strip. This is repeated over all strips in
sequence and highlighted to show the contiguous line. (c) An
axial line on the surface shows some gentle undulation and,
hence, some (negative) Gaussian curvature. The rotation
across each crease is clearly visible.
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properties, namely, the curvature along the strips jS
xx and

the twisting curvature jS
xy must be the same as jG

xx and jG
xy in

Eq. (1). Consequently, the second direction of zero surface
curvature in each strip can be straightforwardly quantified
by drawing a Mohr’s circle for the strips alone from a diameter
with end-points ðjS

xx;�jS
xyÞ ¼ ðj sin2 a;�j sin a cos aÞ and ðjS

yy;j
S
xyÞ

¼ ð0; j sin a cos aÞ; see Fig. 4(b). Recall from Fig. 2 that there is a sec-
ond measurable direction defined by angle b in which the strip is
flat other than across it and this is predicted by Fig. 4(b) by rotat-
ing the diameter by 2b in the same sense of a so that the end point
of the original jS

yy curvature becomes zero again. Using simple ge-
ometry, Fig. 4(b) shows that

tan b ¼
jS

xy

jS
xx=2
¼ 2

tan a
(2)

which is independent of j. Figure 5 compares this prediction with
measurements, and the correlation is very close with a maximum

Fig. 3 Addition of Mohr’s circles for an element in plane-stress
equilibrium. Direct stresses are denoted by r and shear stresses
by s. Top (I): a general state of stress associated with a coordi-
nate system defined by the ða;bÞ axes. The Mohr’s circle, which
is plotted in ðs;rÞ space, shows the diameter formed by the indi-
cated end point coordinates, which follows the usual plotting
convention for Mohr’s circles familiar to many undergraduates.
Also indicated are two vectors to reach the lower end point from
the origin by way of the center of the circle. Middle (II): a second
state of stress associated with a new set of axes ðc;dÞ, which is
rotated from ða;bÞ by an arbitrary angle h. The corresponding di-
ameter (not labeled) is then rotated by 2h in the opposite direc-
tion, to yield the new, and extra, stresses associated with the
original direction. Bottom (III): The stress-states from (I) and (II)
are combined into a third Mohr’s circle by adding the values of
stress associated with the same direction: rIII

aa 5 rI
aa 1 rII

aa ,
rIII

bb 5 rI
bb 1 rII

bb, and sIII
ab 5 sI

ab 1 sII
ab. The pair of vectors from (I)

and (II) also combine faithfully to yield the designated end point.

Fig. 4 Description of the surface shape of a creased cylinder using Mohr’s circles
of twisting curvature (or “twist’’) �c versus the curvature c. (a) Performance of a
smooth right-circular cylinder of radius 1=j. The principal diameter with end-points
(0,0) and (j; 0) is rotated by 2a in the same sense as the fold-lines in Fig. 1, to reveal
the local curvatures jG

xx and jG
yy , respectively, along and normal to the creased

lines and the associated twist jG
xy . Simple geometry gives: jG

xx 5 jsin2a,
jG

yy 5 jsin2a, and jG
xy 5 jsinacosa. (b) Mohr’s circle for the strip (“S”) regions out-

side of the creases. The curvature along jS
xx and the twist jS

xy are the same as in (a)
but the curvature across jS

yy is zero because the strips are flat in this direction.
After rotating the diameter by 2b, a second direction of zero surface curvature is
found, which corresponds to the measurements highlighted in Fig. 2(c). Finally,
the equivalent Mohr’s circle for a crease is obtained by subtracting (b) from (a)
under the rules applied in Fig. 3. The resulting end-points always lie at the end of a
principal diameter: there is no curvature along, so jC

xx 5 0 and there is no twist
jC

xy 5 0; the curvature across is jC
yy 5 jsin2a.

Fig. 5 Predictions (circles) from Eq. (2) compared to measure-
ments for a range of pitch angles of crease. Angle b refers to
the direction along which there is zero surface curvature in
each of the interlineal strips. Each cylinder is constructed and
folded from A4 paper-card, as described in Fig. 1.
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difference of two degrees, which is sufficiently accurate, given
that all measurements were carried out by hand-and-eye alone.
These results also validate our assumptions about the effect of
creasing, which may be identified formally by subtracting the
Mohr’s circle for the strips from the global case. As in the plane-
stress case, each diameter in Figs. 4(a) and 4(b) conform to the
same local orientation, so we may simply subtract the strip curva-
tures from the global ones for each curvature parameter. The
resulting end-points of a diameter for a new Mohr’s circle of the
crease by itself is reproduced in Fig. 4(c) and this describes the
equivalent surface properties of the crease in view of how it
affects a surface: it does not describe the helical properties associ-
ated with the line of crease. As expected, the crease is always ren-
dered as a principal diameter because it cannot confer surface
twist or curvature along its length; however, there is an equivalent
crosswise curvature jC

yy equal to j cos2 a, which is the same as
that in a smooth cylinder in the same direction. In other words,
each crease concentrates the curving required to enable the overall
cylindrical form when there is no curving across each strip. Note
that we do not need to measure actual curvatures since j does not
feature in Eq. (2) and the behavior of the cylinders here only
depends on the crease pitch angle.

4 Discussion

Our creased cylinders are simple to manufacture from card and
are doubly curved, unlike the majority of creased structures in the
research literature, because of self-stress. Original sets of parallel
lines for seeding creases ensure that the final shape is uniform
everywhere: the specific properties are fixed only by the orienta-
tion within the shell and not by the position. Uniformity allows
for a compact description of the shape, which naturally leads to a
Mohr’s circle approach because it efficiently deals with the direc-
tional properties. Other studies have utilized Mohr’s circles in the
description of folded surfaces but only where the fold-line con-
nects developable regions [8]. Conveniently, we have been able to
distinguish the contributions of the creases and the interlineal
strips as separate Mohr’s circles in themselves and this presents a
novel “physical” corollary to how the cylinders were originally
made: we start with a smooth cylinder and think of the process of
orderly creasing as focusing the developable properties of the cyl-
inder in this direction into hinge-lines, thereby obviating Gaussian
curvature everywhere else. The response of other shells is anti-
thetical since creasing relieves the Gaussian curvature ordinarily
demanded of the shell during large deformations. Furthermore, we
can endow the lineal crease with surface properties, thereby dis-
tributing curvature around the cylinder—in the same well-known
way that Gaussian curvature is discretely embedded in the vertices
of polyhedral surfaces [7].

We also propose that creased shells offer structural benefits in
terms of added stiffness and strength and this is due to the surface

texture, which creates extra structural depth and to the presence of
self-stress in the following way. As noted in Sec. 1, one compara-
ble study involves forming a cube by folding before connecting
originally flat faces about straight “ridges”—creases [6]. From the
numerical simulations, the authors find that the assembled faces
are gently curved and the folding ridges between faces concen-
trate both the folding and the energy stored in the cube. Indeed,
they argue that it is the degree of stored strain energy that under-
pins the “anomalous strength” of the cube, which emerges from
simulated loading. In structures parlance, there is a state of elastic
self-stress within the cube before loading and this governs the
shape outside of the creased edges: strictly speaking, its variation
controls both the overall stiffness and the strength of the cube by
offsetting the onset of plasticity and failure. Because there is a
higher density of creases in our cylinder compared to the cube, the
interlineal regions are relatively narrow and it is possible to confer
a higher prestress without inducing local buckling. Consequently,
creased cylinders can be as stiff and strong as smooth ones of the
same size but with a reduced wall-thickness, which offers poten-
tial material savings. For practical materials such as metals,
creases from folding will not be frictionless because the material
is much stiffer, even for a thin-walled sheet. In addition, the rota-
tions are likely to exceed the elastic limit of the material and
residual bending stresses will be focused along the original fold-
lines: unless the fold angle before wrapping exactly matches the
angle furnished by the crease afterwards (equal to the crease cur-
vature times the strip width), the strip will not be flat across its
width, which will affect the other curvature properties. These, and
other aspects of study, continue.

Acknowledgment

The insightful comments of two anonymous referees were
gratefully received; and to C.F. for good company.

References
[1] Ben Amar, M., and Pomeau, Y., 1997, “Crumpled Paper,” Proc. R. Soc. London,

Ser. A, 453, pp. 729–755.
[2] Cerda, E., Chaleb, S., Melo, F., and Mahadevan, L., 1999, “Conical Dislocations

in Crumpling,” Nature (London), 401, pp. 46–49.
[3] Cai, S., Breid, D., Crosby, A. J., Suo, Z., and Hutchinson, J. W., 2011, “Periodic

Patterns and Energy States of Buckled Films on Compliant Substrates,” J. Mech.
Phys. Solids, 59, pp. 1094–1114.

[4] Cerda, E., Mahadevan, L., and Pasini, J. M., 2004, “The Elements of Draping,”
Proc. Natl. Acad. Sci., 101, pp. 1806–1810.

[5] Mahadevan, L. and Rica, S., 2005, “Self-Organised Origami,” Science, 307, pp.
1740.

[6] DiDonna, D. A., and Witten, T. A., 2001, “Anomalous Strength of Membranes
With Elastic Ridges,” Phys. Rev. Lett., 87, pp. 206105.

[7] Calladine, C. R., 1983, Theory of Shell Structures, Cambridge University Press,
Cambridge, England.

[8] Duncan, J. P., and Duncan, J. L., 1982, “Folded Developables,” Proc. R. Soc.
London, Ser. A, 383, pp. 191–205.

054501-4 / Vol. 80, SEPTEMBER 2013 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 02/03/2014 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1098/rspa.1997.0041
http://dx.doi.org/10.1098/rspa.1997.0041
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1016/j.jmps.2011.02.001
http://dx.doi.org/10.1016/j.jmps.2011.02.001
http://dx.doi.org/10.1073/pnas.0307160101
http://dx.doi.org/10.1126/science.1105169
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1098/rspa.1982.0126
http://dx.doi.org/10.1098/rspa.1982.0126

	s1
	s2
	cor1
	l
	s3
	E1
	F1
	F2
	E2
	F3
	F4
	F5
	s4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8

